Year 3

Mastery Overview Spring

Year 3

SOL Overview

As well as providing term by term overviews for the new National Curriculum, as a Maths Hub we are aiming to support primary schools by providing more detailed Schemes of Learning, which help teachers plan lessons on a day to day basis.

The following schemes provide exemplification for each of the objectives in our new term by term overviews, which are linked to the new National Curriculum. The schemes are broken down into fluency, reasoning and problem solving, which are the key aims of the curriculum. Each objective has with it examples of key questions, activities and resources that you can use in your classroom. These can be used in tandem with the mastery assessment materials that the NCETM have recently produced.

We hope you find them useful. If you have any comments about this document or have any suggestions please do get in touch.

Thank you for your continued support with all the work we are doing.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide an assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice
Part 2: Reasoning based questions
You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

The autumn term assessments are now available. we aim to have the spring term assessments completed by February half term.

White Rose

Year 3

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency.
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group.
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete - Pictorial - Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete - students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

Abstract - with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 3

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues.

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they do not appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Year 3

NCETM Mastery Booklets

In addition to the schemes attached the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'. They have been written by experts in mathematics.

It will also give you a detailed idea of what it means to take a mastery approach across your school.

Information can be found on the link below.
https://www.ncetm.org.uk/resources/46689

WRMH Primary Network

over the past 12 months we have been working with a company called MyFlo to develop a free online platform where teachers from across our region (and wider) can share their own resources and lesson plans based on this new curriculum. All our overviews, schemes and assessment materials will be made available on the MyFlo network.

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We do not believe that there are individuals who can do maths and those that cannot. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar Modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a Maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with other Maths Hubs across the country.

Term by Term Objectives

Year 3

Year 3 Overview

[^0]mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 3

Term by Term Objectives

Year 3

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables.	- Solve: $\begin{array}{r} 3 \times 4= \\ 4 \times 3= \\ 12 \div 3= \\ 24 \div 8= \end{array}$ - Fill in the boxes: $3 \times \square=21$ \square $\times 8=32$ $40 \div$ \square $\square=8$ - Shakira buys 8 boxes of cupcakes. There are 4 cupcakes in each box. How many cupcakes does she buy altogether?	- Use the array to complete the number sentences below: 0000 0000 $\begin{aligned} & 3 \times \square=\square \\ & \square \times 3=\square \\ & \square \div 3=\square \\ & \square \div \square=3 \end{aligned}$ - What is wrong with this division sentence? $4 \div 10=40$ Can you correct it?	- Fill in the boxes below using 8 different whole numbers. - Mia has 17 pounds. She wants to buy some cakes and chocolates Cakes cost $£ 3$ and chocolates cost $£ 4$. How many different combinations of cakes and chocolates could she buy?

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
	Write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.	- Use place value counters to multiply a two digit number and one digit number together. 23×4 Set up a grid with 4 rows as we are finding 4 lots of 23. Make 23 in each row using the place value counters. Add up each column, starting with the ones to find out your answer. - $3 \times 5=$ Complete this statement and use this to solve the multiplication below: $\begin{array}{r} 3 \times 50= \\ 30 \times 5= \\ 5 \times 3= \end{array}$ - Solve:	- Always, sometimes, never A two digit number multiplied by a one digit number makes a two digit answer. - Fill in the missing boxes. Explain your answer. - Hassan is calculating 32×5. He writes his answer 15010. Can you work out Hassan's mistake and write an explanation of how he could do it correctly?	- Using the digit cards in the multiplication below how close can you get to 100 ? - Fill in the missing digits in the multiplication below:

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 3

National Curriculum Statement

[^1]mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 3

National Curriculum Statement

Term by Term Objectives

Year 3

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
	Compare durations of events [for example to calculate the time taken by particular events or tasks].	- A TV programme starts at 5:20 and finishes at 6:05. How long does the programme last for? - Kieran is learning his times tables. On Monday it takes him 1 minute and 12 seconds to complete 10 questions. By Friday he can complete 10 questions in 42 seconds. How much quicker is he by Friday? - Look at the two clocks below. How much time has passed between the first and the second clock?	- Henry measures the time it takes for three of his friends to do 30 star jumps. He wants to find out who is the quickest. Henry says: The person with the highest time is the winner because the highest score always wins! Is Henry correct? Explain your reasoning. - Order the times below from shortest time to longest time. 83 seconds 1 minute 12 seconds 56 seconds 2 minutes 2 seconds 1 minute 87 seconds 143 seconds Explain your reasoning.	- Ashrita Furman is famous for holding the most world records at the same time, 131! Below is a list of world records he has broken travelling one mile on different equipment. Estimate and order the records from the one you think is quickest to the one you think took the longest. (Remove information in brackets until after activity) 1. Pool Cue balancing on finger (6min 55s) 2. On a Space Hopper (13 min) 3. Sack Race (16min 41s) 4. Pogo stick whilst juggling (23min 28s) 5. Hula hooping whilst balancing a milk bottle on head (13min 37s) 6. Pushing an orange with your nose. (22min 41s) 7. Playing tiddlywinks (23min 22s) How long do you think it would take you? See how long it takes you to complete some of the challenges over 100 min .

All Students

National Curriculum Statement
© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 3

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
$\begin{aligned} & \mathcal{O} \\ & \stackrel{-}{O} \\ & \hdashline- \\ & \frac{\square}{\square} \end{aligned}$	Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.	- Complete the fractions to describe the set of objects. - Write the fraction of each set of objects that is shaded. ET CHE NT さu Mo E0	- Find the fraction of each colour of skittles. Sahil says: "If I take away 5 yellow skittles, I will have to change all my fractions." Do you agree? Explain your thinking. - This is $\frac{2}{5}$ of a set of marbles. How many would be in the whole set?	- Kayleigh has 12 chocolates. On Friday, she ate $\frac{1}{4}$ of her chocolates and gave one to her mum. On Saturday, she ate $\frac{1}{2}$ her chocolates, and gave one to her brother. On Sunday, she ate $\frac{1}{3}$ of her chocolates. How many did she have left? What fraction of her starting number is this? - I cut my pizza into 4 equal parts and I eat two of them. My friend cuts each of the remaining slices in half and eats two of them. How much of the original pizza is left?

Year 3

National Curriculum Statement

Term by Term Objectives

Year 3

National Curriculum Statement

Term by Term Objectives

Year 3

[^0]: © Trinity Academy Halifax 2015

[^1]: © Trinity Academy Halifax 2015

