Year 3

Mastery Overview Summer

White Rose

Year 3

SOL Overview

As well as providing term by term overviews for the new National Curriculum, as a Maths Hub we are aiming to support primary schools by providing more detailed Schemes of Learning, which help teachers plan lessons on a day to day basis.

The following schemes provide exemplification for each of the objectives in our new term by term overviews, which are linked to the new National Curriculum. The schemes are broken down into fluency, reasoning and problem solving, which are the key aims of the curriculum. Each objective has with it examples of key questions, activities and resources that you can use in your classroom. These can be used in tandem with the mastery assessment materials that the NCETM have recently produced.

We hope you find them useful. If you have any comments about this document or have any suggestions please do get in touch.

Thank you for your continued support with all the work we are doing.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide an assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice
Part 2: Reasoning based questions
You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

The autumn and spring assessments are now available.

Year 3

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency.
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group.
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete - Pictorial - Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete - students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

An example of a bar modelling diagram used to solve problems.

Abstract - with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 3

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues.

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they do not appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Year 3

Mixed Year \& Reception Planning

We have been working on mixed year and reception versions of our planning documentation and guidance. These have been created by teachers from across our region and wider. Working documents can be found in the Dropbox, although we hope that the final documents will be available later on in the summer term. Please contact the Hub if you would like any more information.

Problem Solving

As a Hub we have produced a series of problems for KS1 and KS2. These can be found here.
http://tinyurl.com/zfeq8gs
We are hoping to release more in September. In addition to the schemes attached the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'.

It will also give you a detailed idea of what it means to take a mastery approach across your school. https://www.ncetm.org.uk/resources/46689
© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We do not believe that there are individuals who can do maths and those that cannot. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar Modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a Maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with other Maths Hubs across the country.

Term by Term Objectives

Year 3

Year 3 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\frac{\underline{E}}{\frac{2}{3}}$	Numb V	Place ue	Number: Addition and Subtraction				Number: Multiplication and Division				Measurement	
$\frac{ㅗ ㅡ ㄴ ~}{\circ}$	Numb	: Multip d Division	ation	Measurement			Number: Fractions				Consolidation	
	Number: Fractions				Geometry: Property of Shapes		Measurement					

[^0]mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 3

Year Group		Y3		Term Sum	Week 7					
Week 1	Week 2	Week 3	Week 4	Week 5 Week 6		Week 8	Week 9	Week 10	Week 11	Week 12
Number: Recognis fractions Add and denomina Compare with the Solve pro	ctions small den tract fracti within on d order unit e denomin $m s$ that inv	diagrams, eq nators. with the sam ole. tions, and fr all of the ab	valent ctions e.	Geometry: Property of Shapes Recognise angles as a property of shape or a description of a turn. Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle. Identify horizontal and vertical lines and pairs of perpendicular and parallel lines. Draw 2-D shapes and make 3D shapes using modelling materials. Recognise 3-D shapes in different orientations and describe them.	Measureme Measure, ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$) Solve proble using numb addition and Continue to units, progr including co example, 1 k mixed units	are, add and ass (kg/g); including cts, place traction. asure using g to using aring and u d 200 g) an example,	tract: lengt me/capacity ng number , and more appropriate der range of mixed units ple equival 500 cm).	/ml). oblems, mplex ools and measures, or nts of	Statistics Interpret and present data using bar charts, pictograms and tables. Solve onestep and two-step questions (for example, 'How many more?' and 'How many fewer?') using information presented in scaled bar charts and pictograms and tables.	Consolidation

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 3

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

	Add and subtract fractions with the same denominator within one whole.	- Complete the statements: $\begin{gathered} \frac{1}{5}+\frac{3}{5}= \\ \frac{6}{8}-\frac{3}{8}= \\ \frac{2}{10}+\frac{3}{10}+\frac{4}{10}= \end{gathered}$ - Write these statements using numbers: 1 sixth +3 sixths $=\square$ Sixths 5 eighths -3 eighths $=\square$ Eighths - Find the sum of: $\frac{2}{12}, \frac{4}{12} \text { and } \frac{5}{12}$	- Explain why only the numerator changes in this calculation $\frac{2}{5}+\frac{9}{5}=$ - Rick is stuck on the calculation $\frac{11}{6}-\frac{3}{6}=$ His friend, Susie, draws him the following model to help. Susie says, "Now take $\frac{3}{6}$ away". Rick is confused because he thinks the diagram shows $\frac{11}{12}$. Explain the diagram to Rick and work out the answer.	- Use some of the cards below to make a fraction sentence. Can you make more than 1 ? - How many fraction addition and subtractions can you make from this model? Do your additions and subtractions always have to be 1 part add 1 part or subtract only 1 part? Can there be more than 2 parts?

Term by Term Objectives

Year 3

(

Term by Term Objectives

Year 3

	Solve problems that involve all of the above.	- Use different concrete objects and pictorial representations to make $\frac{3}{6}$ - Phil baked a chocolate and banana loaf. He ate $\frac{3}{6}$ of it. Rich ate $\frac{2}{6}$ of it. What amount of loaf was left? - Fill in the missing boxes $\begin{aligned} & \frac{1}{5}+\frac{2}{5}+\frac{2}{5}=\square \\ & \frac{4}{7}-\frac{\square}{7}=\frac{5}{7}-\frac{5}{7} \\ & \frac{1}{4}+\frac{2}{3}+\frac{\square}{\square}+\frac{1}{3}=2 \end{aligned}$	- Raja has a number card. 40 He says, "Three eighths of my number is 20. ." Is he correct? Explain why. - Kate has a number card. She says, "Three quarters of my number is 18. ." Her friend, Sally, says, "Six eighths of the same number is also 18. ." What is the number on the card? Who is correct? Sally or Kate.	- Three pandas shared 1 bamboo stick. They split it into equal parts and each had an odd number of parts. What are the possible fraction amounts that each panda had? Can you use a strategy or a method?

Term by Term Objectives

Year 3

Term by Term Objectives

Year 3

Term by Term Objectives

Year 3

Term by Term Objectives

Term by Term Objectives

Year 3

- Look at the above pictogram. True or false? Year 2 has double the amount of children Year 3 has.
- Which would be most suitable for this information?
A bar chart or pictogram.
Explain why.

Charity	Amount raised in a year (£).
Donkey Rescue	2790
Save the Rhinos	5650
Money for Meerkats	3000
Collecting for cats	4430

- What's the same and what's different about a bar chart and a pictogram?
- 62 people are going to a football game. They can travel in a car, minibus or coach.

A car can hold 5 people.
A minibus can hold 7 people.
A coach can hold 15 people.
Each vehicle they take is full.
Decide how many of each vehicle is taken to the match.
Choose a table to represent this information.
Is this the only option?
(If this is completed in a pictogram then the images can be printed out for children to move around.)

It costs $£ 150$ to hire the coach.
It costs $£ 84$ to hire a minibus.
It costs $£ 55$ for the petrol in a car.
What would the cheapest option be for the whole group?

Term by Term Objectives

Year 3

0$-\infty$$-\infty$$\square=0$	Solve one-step and two-step questions (for example, 'How many more?' and 'How many fewer?') using information presented in	Day	People at park $=3$
		Mo	
		Tu	$+3$
		We	+2
		Th	$\bigcirc \bigcirc$
		Fr	
		Sa	
		Su	$+2$

- How many more people went to the park on Sunday than Monday?
- How many fewer went to the park on Wednesday than the day after?
- How many people attended in the week if all the people were different?
- The next week 12 more people went on Saturday. How many went?
- True or false?

At the park there 4 double swings and 6 single swings.
Look at the table on the left.
There weren't enough swings for the people at the park on Thursday.

- Always, sometimes, never.

Pictograms can only have data where each row is a multiple of the key given.
e.g. If the key equals 3 then only multiples of 3 can be in the pictogram.

- How many questions can you create for your partner for this set of data?

Day	Amount of hours shop open
Monday	6
Tuesday	8
Wednesday	8.5
Thursday	7
Friday	10
Saturday	12

- Look at the table above. The shop closes for 45 minutes each day so the workers can have their lunch. How many hours are the workers there in a week?
- Work in a group to work out how many hours you each spend sleeping a week.
Consider what will be the best way to record these results so they can all be displayed in one graph.

[^0]: © Trinity Academy Halifax 2016

