Year 5

Mastery Overview Summer

Year 5

SOL Overview

As well as providing term by term overviews for the new National Curriculum, as a Maths Hub we are aiming to support primary schools by providing more detailed Schemes of Learning, which help teachers plan lessons on a day to day basis.

The following schemes provide exemplification for each of the objectives in our new term by term overviews, which are linked to the new National Curriculum. The schemes are broken down into fluency, reasoning and problem solving, which are the key aims of the curriculum. Each objective has with it examples of key questions, activities and resources that you can use in your classroom. These can be used in tandem with the mastery assessment materials that the NCETM have recently produced.

We hope you find them useful. If you have any comments about this document or have any suggestions please do get in touch.

Thank you for your continued support with all the work we are doing.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide an assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice
Part 2: Reasoning based questions
You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

The autumn and spring assessments are now available.

Year 5

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete - Pictorial - Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete - students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

> An example of a bar modelling diagram used to solve problems.

Abstract - with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 5

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues.

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they don't appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Year 5

Mixed Year \& Reception Planning

We have been working on mixed year and reception versions of our planning documentation and guidance. These have been created by teachers from across our region and wider. Working documents can be found in the Dropbox, although we hope that the final documents will be available later on in the summer term. Please contact the Hub if you would like any more information.

Problem Solving

As a Hub we have produced a series of problems for KS1 and KS2. These can be found here. http://tinyurl.com/zfeq8gs

We are hoping to release more in September. In addition to the schemes attached the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'.

It will also give you a detailed idea of what it means to take a mastery approach across your school.
https://www.ncetm.org.uk/resources/46689
© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We don't believe that there are individuals who can do maths and those that can't. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar Modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a Maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with other Maths Hubs across the country.

Term by Term Objectives

Year 5

Year 5 Overview

[^0]mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 5

Term by Term Objectives

Year 5

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
$\begin{aligned} & \frac{\sim}{0} \\ & \frac{\square}{\leftarrow} \\ & \frac{ே}{4} \end{aligned}$	Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.	- If one angle in a triangle is 38° and another is 68°, what type of angle will the third be? - Tick all the obtuse angles - Which number is an angle? 79.4 -60 Explain why.	- Odd one out. Explain why. - Cut out a circle with a spinner in the centre. Put the arrow in the starting position above. Turn over a flash card with an angle on. Estimate the given angle by moving the spinner. Check how close you are.	- Estimate and measure the angles in these shapes. Record your results in a table. Work out how close you were. Did you notice anything or find any easier?

Term by Term Objectives

Year 5

$\frac{\text { U }}{\text { U }}$

- Gary says,

If I turn the letter M by 180° then it looks like the letter W

Do you agree? Prove it.

- Design a 'fun house' for children to play in. It should have 'wonky' walls, windows and doors.
Label the angle types.
e.g.

- How many right angles can you find?

- Investigate the amount of obtuse and acute angles there could be in a pentagon.
How many different pentagons can you create?
Record the information in a table to show different acute and obtuse angles.
- Create your own missing angles for a partner. Include information relating to quarter, half and full turns.

[^1]mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 5

© Trinity Academy Halifax 2016 mathshub@trinityacademyhalifax.org

$\begin{aligned} & \mathscr{0} \\ & 0 \\ & \frac{0}{0} \\ & \frac{\sim}{n} \end{aligned}$	Use the properties of rectangles to deduce related facts and find missing lengths and angles.	- Complete the rectangles on the grids below. - Why is a square a special rectangle? - Join 4 dots together to make a rectangle.	- The perimeter of the rectangle is 45 cm . Find the length of the rectangle. - Here is a rectangle. What is the sum of angles a and b ? Find angle c . - A shape has 4 right angles. It has 4 straight sides. It has 2 pairs of parallel lines. Draw what the shape could be. Is there more than one option?	- A rectangular classroom has a perimeter between 20 and 25 cm . What could the dimensions be? - A rectangular classroom has an area between 20 and 25 cm . What could the dimensions be? - A shape is made up of a square and rectangle. The perimeter of the shape is 70 cm . The area of the square is $121 \mathrm{~cm}^{2}$ What is the area of the rectangle?

[^2]
Year 5

Term by Term Objectives

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 5

Convert between different units of metric measure (for example, km and $\mathrm{m} ; \mathrm{cm}$ and $\mathrm{m} ; \mathrm{cm}$ and mm ; g and kg ; I and ml)	- Use <, > or = to complete the statements below - True or false? $\begin{aligned} & 1000 \mathrm{~m}=1 \mathrm{~km} \\ & 1000 \mathrm{~cm}=1 \mathrm{~m} \\ & 1000 \mathrm{ml}=1 \mathrm{l} \\ & 1000 \mathrm{~g}=1 \mathrm{~kg} \end{aligned}$ - Bryan is 2.68 m tall. He is 99 cm taller than his sister. How tall is his sister? Give your answer in centimetres.	- Adam makes 2.5 litres of lemonade for a charity event. He pours it into 650 ml glasses to sell. He thinks he can sell 7 glasses. Is he correct? Prove it. - A $5 p$ coin has a thickness of 1.6 mm Jake makes a tower of $5 p$ coins worth 90p. What is the height of the coins in cm ? - Laura buys 3500 g of potatoes and 1500 g of carrots. She pays with a $£ 20$ note. How much change does she get?	- A plank of wood is 5.8 m long. Two lengths are cut from the wood. 175 cm $3 \frac{4}{5} \mathrm{~m}$ How much wood is left? - Cola is sold in bottles and cans. Yasmin buys 5 cans and 3 bottles. She sells the cola in 100ml glasses. She sells all the cola. How many glasses does she sell?

Term by Term Objectives

Year 5

	Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.	- Fill in the missing boxes. - True or false? There are 16 pounds in a stone. There are 16 ounces in a pound. - Complete the statements: I would measure milk in \qquad I can measure the length of my car in \qquad Is there more than one option? Which is the most reasonable and why?	- Half a galleon is the answer. What's the question? - Odd one out. Which of these is different to the others? Explain why.	- Rita, Margret and Mable each buy some ribbon for presents from a shop. Rita buys 2 feet of ribbon. Margret buys three times as much as Rita does. Mable buys 15 cm more than Margret. How many cm (approximately) of ribbon do they each buy? - Mr Smith sells apples for 40p a kilogram. Mr Brown sells apples for 24 p a pound. Who sells them cheaper? - Simon travels 480 kilometres in a year. How many miles is this approximately?

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 5

[^3]
Term by Term Objectives

Year 5

King
Know and use the vocabulary of
prime numbers, prime factors
and composite (non-prime)
numbers.

Term by Term Objectives

Year 5

Term by Term Objectives

Year 5

Perimeter and Area Measure and calculate the perimeter of composite rectilinear shapes in cm and m .		- The length labelled ' x ' is a multiple of 1.8 What could ' y ' be? Explain to a partner why you have chosen these measurements. - Here is a square inside another square. The perimeter of the inner square is 16 cm . The outer square's perimeter is four times the size of the inner square. What is the length of one sides of the outer square? How do you know? What do you notice?	- Investigate the different ways you can make composite rectilinear shapes with a perimeter of 54 cm . - Amy and Ayesha are making a collage of their favourite football team. They want to make a border for the canvas. Here is the canvas. They have a roll of blue ribbon that is 245 cm long and a roll of red ribbon that is 2.7 m long. How much ribbon will they have left over?

© Trinity Academy Halifax 2016 mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 5

Calculate and compare the area of rectangles (including squares), and including using standard units, $\mathrm{cm}^{2}, \mathrm{~m}^{2}$ estimate the area of irregular shapes.	- Estimate and work out the area of these shapes. Find the unknown sides first. Were you close?	- Put these amounts in order starting with the smallest. $2.7 \mathrm{~m}^{2}$ $27 m^{2}$ $27000 \mathrm{~cm}^{2}$ How do you know? - Wiktoria says, The area of squares and square numbers are related. Do you agree? Explain why.	- Here is a square inside another square. The area of the inner square is $16 \mathrm{~m}^{2}$. The outer square's area is four times the size of the inner square. What is the length of one sides of the outer square? How do you know? - Investigate how many ways you can make different squares and rectangles with the same area of $84 \mathrm{~cm}^{2}$. What strategy did you use?

© Trinity Academy Halifax 2016 mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 5

Term by Term Objectives

Year 5

[^0]: © Trinity Academy Halifax 2016

[^1]: © Trinity Academy Halifax 2016

[^2]: © Trinity Academy Halifax 2016
 mathshub@trinityacademyhalifax.org

[^3]: © Trinity Academy Halifax 2016
 mathshub@trinityacademyhalifax.org

